login
A160918
Averages of twin prime pairs that are sums of 4 consecutive averages of twin prime pairs.
3
102, 150, 420, 660, 858, 1020, 2310, 2730, 3120, 3390, 5100, 5502, 5850, 6198, 7758, 12540, 13692, 13998, 15360, 17292, 21840, 23688, 25932, 32832, 41520, 43398, 46092, 49032, 49410, 50892, 58152, 61560, 64920, 70878, 72270, 78138, 88818
OFFSET
1,1
COMMENTS
Members of A014574 which can be written as a sum of 4 consecutive members.
LINKS
FORMULA
{A014574(i): A014574(i) = Sum_{k=0..3} A014574(j+k) for some k,j}.
EXAMPLE
102 is in the sequence because it can be written as 12 + 18 + 30 + 42.
150 is in the sequence because it is 18 + 30 + 42 + 60.
MATHEMATICA
PrimeNextTwinAverage[n_]:=Module[{k}, k=n+1; While[ !PrimeQ[k-1]||!PrimeQ[k+1], k++ ]; k]; lst={}; Do[If[PrimeQ[n-1]&&PrimeQ[n+1], a=n; b=PrimeNextTwinAverage[a]; c=PrimeNextTwinAverage[b]; d=PrimeNextTwinAverage[c]; a=a+b+c+d; If[PrimeQ[a-1]&&PrimeQ[a+1], AppendTo[lst, a]]], {n, 2*8!}]; lst
With[{tpms=Mean/@Select[Partition[Prime[Range[10000]], 2, 1], #[[2]]- #[[1]] ==2&]}, Total/@Select[Partition[tpms, 4, 1], MemberQ[tpms, Total[#]]&]] (* Harvey P. Dale, Apr 27 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved