login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160574
Positive numbers y such that y^2 is of the form x^2+(x+313)^2 with integer x.
3
233, 313, 493, 905, 1565, 2725, 5197, 9077, 15857, 30277, 52897, 92417, 176465, 308305, 538645, 1028513, 1796933, 3139453, 5994613, 10473293, 18298073, 34939165, 61042825, 106648985, 203640377, 355783657, 621595837, 1186903097
OFFSET
1,1
COMMENTS
(-105, a(1)) and (A129640(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+313)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (363+130*sqrt(2))/313 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (119187+47998*sqrt(2))/313^2 for n mod 3 = 1.
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=233, a(2)=313, a(3)=493, a(4)=905, a(5)=1565, a(6)=2725.
G.f.: (1-x)*(233+546*x+1039*x^2+546*x^3+233*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 313*A001653(k) for k >= 1.
EXAMPLE
(-105, a(1)) = (-105, 233) is a solution: (-105)^2+(-105+313)^2 = 11025+43264 = 54289 = 233^2.
(A129640(1), a(2)) = (0, 313) is a solution: 0^2+(0+313)^2 = 97969 = 313^2.
(A129640(3), a(4)) = (464, 905) is a solution: 464^2+(464+313)^2 = 215296+603729 = 819025 = 905^2.
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {233, 313, 493, 905, 1565, 2725}, 30] (* Harvey P. Dale, Dec 21 2022 *)
PROG
(PARI) {forstep(n=-108, 10000000, [3, 1], if(issquare(2*n^2+626*n+97969, &k), print1(k, ", ")))}
CROSSREFS
Cf. A129640, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A160575 (decimal expansion of (363+130*sqrt(2))/313), A160576 (decimal expansion of (119187+47998*sqrt(2))/313^2).
Sequence in context: A140033 A142182 A105981 * A087862 A141280 A097446
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Jun 08 2009
STATUS
approved