login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160527
Coefficients in the expansion of C^3/B^4, in Watson's notation of page 118.
6
1, 4, 14, 40, 105, 252, 574, 1237, 2568, 5138, 9988, 18893, 34937, 63238, 112370, 196244, 337477, 572024, 956956, 1581321, 2583637, 4176495, 6684820, 10599939, 16661401, 25972485, 40171474, 61672695, 94017765, 142368024, 214211760, 320350725, 476299978
OFFSET
0,2
LINKS
G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. (Crelle), 179 (1938), 97-128.
FORMULA
See Maple code in A160525 for formula.
G.f.: Product_{n >= 1} (1 - x^(7*n))^3/(1 - x^n)^4. - Seiichi Manyama, Nov 06 2016
a(n) ~ exp(Pi*sqrt(50*n/21)) * 5 / (196*sqrt(3)*n). - Vaclav Kotesovec, Nov 10 2017
EXAMPLE
G.f. = 1 + 4*x + 14*x^2 + 40*x^3 + 105*x^4 + 252*x^5 + 574*x^6 + ...
G.f. = q^17 + 4*q^41 + 14*q^65 + 40*q^89 + 105*q^113 + 252*q^137 + 574*q^161 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(7*k))^3 /(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
CROSSREFS
Sequence in context: A160463 A278680 A121593 * A023003 A001872 A054443
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 13 2009
STATUS
approved