login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = number of solutions to an equation x_1 + ... + x_j =0 with 1<=j<=n satisfying -n<=x_i<=n (1<=i<=j).
1

%I #12 Dec 07 2019 12:18:26

%S 1,6,45,560,9795,223524,6284089,210208560,8156750283,360297117070,

%T 17853149451841,980844453593160,59179098916735213,3890176308574524934,

%U 276750779199166606705,21185250061147839785120,1736385140876356212244563,151719500906542020597450498

%N a(n) = number of solutions to an equation x_1 + ... + x_j =0 with 1<=j<=n satisfying -n<=x_i<=n (1<=i<=j).

%C The number of variables in the equation can be from 1 to n and each variable can have a value of -n to n. See A286928 for the case of exactly n variables. - _Andrew Howroyd_, May 16 2017

%F a(n) = Sum_{k=1..n} Sum_{i=0..floor(k/2)} (-1)^i*binomial(k*(n+1)-i*(2*n+1)-1, k-1)*binomial(k, i). - _Andrew Howroyd_, May 16 2017

%e From _Andrew Howroyd_, May 16 2017 (Start)

%e Case n=3:

%e 1 variable: {0} is only solution.

%e 2 variables: {-3,3}, {-2,2}, {-1,1}, {0,0}, {1,-1}, {2,-2}, {3,-3}.

%e 3 variables: {-3 0 3}x6, {-3 1 2}x6, {-2 -1 3}x6, {-2 0 2}x6,

%e {-2 1 1}x3, {-1 -1 2}x3, {-1 0 1}x6, {0 0 0}x1

%e In the above, {-3 0 3}x6 means that the values can be expanded to 6 solutions by considering different orderings.

%e In total there are 1 + 7 + 37 = 45 solutions so a(3)=45.

%e (End)

%t zerocompositionswithzero[p_] := Module[{united = {}, i, zerosums = {}, count = 0}, For[i = 1, i <= p, i = i + 1, united = Union[united, Tuples[Table[x, {x, -p, p}], i]] ]; For[i = 1, i <= Length[united], i = i + 1, If[Sum[united[[i, j]], {j, 1, Length[united[[i]]]}] == 0, zerosums = Append[zerosums, united[[i]]]; count = count + 1;]; ]; Return[{count, zerosums}]; ];

%o (PARI)

%o \\ nr compositions of r with max value m into exactly k parts.

%o compositions(r,m,k)=sum(i=0,floor((r-k)/m),(-1)^i*binomial(r-1-i*m, k-1)*binomial(k, i));

%o a(n)=sum(v=1,n,compositions(v*(n+1),2*n+1,v)); \\ _Andrew Howroyd_, May 16 2017

%o (Python)

%o from sympy import binomial

%o def C(r, m, k): return sum([(-1)**i*binomial(r - 1 - i*m, k - 1)*binomial(k, i) for i in range(int((r - k)/m) + 1)])

%o def a(n): return sum([C(v*(n + 1), 2*n + 1, v) for v in range(1, n + 1)]) # _Indranil Ghosh_, May 16 2017, after the PARI program by _Andrew Howroyd_

%Y Cf. A286928.

%K nonn

%O 1,2

%A _Srikanth K S_, May 15 2009

%E Name clarified and a(6)-a(18) from _Andrew Howroyd_, May 16 2017