login
A160214
Decimal expansion of (1947891+1218490*sqrt(2))/953^2.
4
4, 0, 4, 2, 1, 2, 6, 9, 5, 9, 3, 4, 0, 8, 4, 8, 4, 0, 1, 6, 5, 0, 2, 4, 7, 5, 6, 8, 0, 8, 4, 3, 0, 1, 0, 9, 3, 4, 2, 2, 7, 2, 4, 8, 1, 7, 1, 1, 5, 9, 4, 7, 3, 8, 4, 0, 1, 0, 7, 8, 6, 6, 0, 7, 4, 2, 6, 6, 2, 4, 9, 4, 8, 3, 1, 1, 7, 7, 9, 3, 4, 3, 4, 8, 6, 8, 0, 6, 1, 2, 7, 9, 9, 7, 9, 4, 7, 5, 8, 6, 9, 1, 2, 1, 3
OFFSET
1,1
COMMENTS
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 0, b = A129975.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 1, b = A160212.
LINKS
FORMULA
Equals (1690+721*sqrt(2))/(1690-721*sqrt(2)).
Equals (3+2*sqrt(2))*(31-2*sqrt(2))^2/(31+2*sqrt(2))^2.
EXAMPLE
(1947891+1218490*sqrt(2))/953^2 = 4.04212695934084840165...
MATHEMATICA
RealDigits[(1947891 +1218490*Sqrt[2])/953^2, 10, 100][[1]] (* G. C. Greubel, Apr 08 2018 *)
PROG
(PARI) (1947891 +1218490*sqrt(2))/953^2 \\ G. C. Greubel, Apr 08 2018
(Magma) (1947891 +1218490*Sqrt(2))/953^2; // G. C. Greubel, Apr 08 2018
CROSSREFS
Cf. A129975, A160212, A002193 (decimal expansion of sqrt(2)), A160213 (decimal expansion of (969+124*sqrt(2))/953).
Sequence in context: A222617 A204695 A175435 * A081087 A135031 A238002
KEYWORD
cons,nonn
AUTHOR
Klaus Brockhaus, May 18 2009
STATUS
approved