login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159832
Numerator of Hermite(n, 13/22).
1
1, 13, -73, -7241, -41135, 6474533, 133942279, -7659772289, -326475260383, 10585140766525, 848669947078999, -14583331342963513, -2448742706582821007, 10516339034389368661, 7840456962356616680615, 66296583862124835824527, -27599003183146895684913599
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 11^n * Hermite(n, 13/22).
E.g.f.: exp(13*x - 121*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(13/11)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 13/11, -73/121, -7241/1331, -41135/14641, ...
MATHEMATICA
Numerator/@Table[HermiteH[n, 13/22], {n, 0, 20}] (* Harvey P. Dale, Apr 16 2011 *)
Table[11^n*HermiteH[n, 13/22], {n, 0, 30}] (* G. C. Greubel, Jul 11 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 13/22)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(13/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 11 2018
CROSSREFS
Cf. A001020 (denominators).
Sequence in context: A220414 A139157 A228027 * A139070 A094421 A301882
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved