login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159582
Expansion of (1+6*x+x^2-2*x^3)/((x^2+2*x-1)*(x^2-2*x-1)), bisection is NSW numbers.
1
1, 6, 7, 34, 41, 198, 239, 1154, 1393, 6726, 8119, 39202, 47321, 228486, 275807, 1331714, 1607521, 7761798, 9369319, 45239074, 54608393, 263672646, 318281039, 1536796802, 1855077841, 8957108166, 10812186007, 52205852194, 63018038201, 304278004998
OFFSET
0,2
COMMENTS
Define c = [0, 7, 0, 41, 0, 239, 0, 1393, 0, 8119, 0, 47321, ...] where (c(2n+1)) = A002315(n+1) (NSW numbers). Then (a(n)) has the property c(2n) - a(2n) = -a(2n) = -A002315(n) and c(2n+1) - a(2n+1) = A002315(n) (NSW numbers).
FORMULA
a(n) = 3*A078057(n)/2 - (-1)^n*A078057(n)/2. - R. J. Mathar, Nov 10 2009
From Colin Barker, Jun 29 2017: (Start)
a(n) = 6*a(n-2) - a(n-4) for n>3.
a(n) = ((-(-2+sqrt(2))*(-1+sqrt(2))^n - (-1-sqrt(2))^n*(2+sqrt(2)) - 3*(-(1-sqrt(2))^n*(-2+sqrt(2)) - (1+sqrt(2))^n*(2+sqrt(2))))) / (4*sqrt(2)).
(End)
PROG
(PARI) Vec((1+6*x+x^2-2*x^3) / ((x^2+2*x-1)*(x^2-2*x-1)) + O(x^50)) \\ Colin Barker, Jun 29 2017
CROSSREFS
Cf. A002315.
Sequence in context: A348950 A292106 A037375 * A041553 A047190 A359530
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Apr 16 2009
STATUS
approved