OFFSET
1,1
COMMENTS
(-25,a(1)) and (A129999(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+337)^2 = y^2.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,6,0,0,-1).
FORMULA
a(n) = 6*a(n-3)-a(n-6)for n > 6; a(1)=313, a(2)=337, a(3)=365, a(4)=1513, a(5)=1685, a(6)=1877.
G.f.: x*(1-x)*(313+650*x+1015*x^2+650*x^3+313*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 337*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (339+26*sqrt(2))/337 for n mod 3 = {0, 2}.
Limit_{n -> oo} a(n)/a(n-1) = (278307+179662*sqrt(2))/337^2 for n mod 3 = 1.
EXAMPLE
PROG
(PARI) {forstep(n=-28, 50000000, [3, 1], if(issquare(2*n^2+674*n+113569, &k), print1(k, ", ")))}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Apr 16 2009
STATUS
approved