login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158991
Numerator of Hermite(n, 4/7).
2
1, 8, -34, -1840, -4724, 683488, 7782664, -339629632, -8055944560, 201822075008, 8719919701984, -128026275891968, -10424283645874496, 67164631281958400, 13817854415099775104, 18392961201951276032, -20165102300581059194624, -190160981569308074375168
OFFSET
0,2
LINKS
DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)
FORMULA
D-finite with recurrence a(n) -8*a(n-1) +98*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jul 09 2018: (Start)
a(n) = 7^n * Hermite(n, 4/7).
E.g.f.: exp(8*x - 49*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/7)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerator of 1, 8/7, -34/49, -1840/343, -4724/2401, 683488/16807, 7782664/117649...
MAPLE
A158991 := proc(n)
orthopoly[H](n, 4/7) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 16 2014
MATHEMATICA
Numerator[Table[HermiteH[n, 4/7], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2011*)
Table[7^n*HermiteH[n, 4/7], {n, 0, 30}] (* G. C. Greubel, Jul 09 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 4/7)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(8/7)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018
CROSSREFS
Cf. A000420 (denominators)
Sequence in context: A203445 A318244 A280395 * A265161 A303805 A360658
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved