login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158895
A list of primes written in order of their first appearance in a table of prime factorizations of 2^k+1, k=1,2,... .
1
3, 5, 17, 11, 13, 43, 257, 19, 41, 683, 241, 2731, 29, 113, 331, 65537, 43691, 37, 109, 174763, 61681, 5419, 397, 2113, 2796203, 97, 673, 251, 4051, 53, 157, 1613, 87211, 15790321, 59, 3033169, 61, 1321, 715827883
OFFSET
1,1
COMMENTS
This sequence has the property that if a(n) appears first in the table as a prime factor of 2^m+1 for some m then a(n)=2*k*m+1 for some k.
When, for some m, 2^m+1 has more than one prime factor appearing in the table for the first time, we adopt the convention of entering them in ascending order. For example, the entries ..., 29, 113, ... both arise from 2^14+1.
LINKS
Harvey P. Dale and Charles R Greathouse IV, Table of n, a(n) for n = 1..4017 (first 650 terms from Dale)
EXAMPLE
2^1+1=3, 2^2+1=5, 2^3+1=3^2 and 2^4+1=17. Thus a(1)=3, a(2)=5 and a(3)=17, on noting that 2^3+1 contributes no new prime factors.
MATHEMATICA
DeleteDuplicates[Flatten[Table[Transpose[FactorInteger[2^k+1]][[1]], {k, 50}]]] (* Harvey P. Dale, Mar 30 2014 *)
PROG
(PARI) lista(n)=prs = Set(); for (k=1, n, f = factor(2^k+1); for (i=1, length(f~), onef = f[i, 1]; if (! setsearch(prs, onef), print1(onef, ", "); prs = setunion(prs, Set(onef)); ); ); ); \\ Michel Marcus, Apr 18 2013
(PARI) G=1; for(n=1, 500, g=gcd(f=2^n+1, G); while(g>1, g=gcd(g, f/=g)); f=factor(f)[, 1]; if(#f, for(i=1, #f, print1(f[i]", ")); G*=factorback(f))) \\ Charles R Greathouse IV, Jan 03 2018
CROSSREFS
Subsequence of A001269.
Sequence in context: A291963 A375911 A242104 * A085418 A339944 A359395
KEYWORD
nice,nonn
AUTHOR
Martin Griffiths, Mar 29 2009
STATUS
approved