login
A158819
(Number of squarefree numbers <= n) minus round(n/zeta(2)).
3
0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1
OFFSET
1,7
COMMENTS
Race between the number of squarefree numbers and round(n/zeta(2)).
First term < 0: a(172) = -1.
REFERENCES
G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Q. J. Math., 48 (1917), pp. 76-92.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition (1979), Clarendon Press, pp. 269-270.
FORMULA
Since zeta(2) = Sum_{i>=1} 1/(i^2) = (Pi^2)/6, we get:
a(n) = A013928(n+1) - n/Sum_{i>=1} 1/(i^2) = O(sqrt(n));
a(n) = A013928(n+1) - 6*n/(Pi^2) = O(sqrt(n)).
CROSSREFS
Cf. A008966 1 if n is squarefree, else 0.
Cf. A013928 Number of squarefree numbers < n.
Cf. A100112 If n is the k-th squarefree number then k else 0.
Cf. A057627 Number of nonsquarefree numbers not exceeding n.
Cf. A005117 Squarefree numbers.
Cf. A013929 Nonsquarefree numbers.
Sequence in context: A357900 A357732 A356428 * A031279 A124778 A037831
KEYWORD
sign
AUTHOR
Daniel Forgues, Mar 27 2009
STATUS
approved