login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157665
a(n) = 729*n^2 - 1016*n + 354.
3
67, 1238, 3867, 7954, 13499, 20502, 28963, 38882, 50259, 63094, 77387, 93138, 110347, 129014, 149139, 170722, 193763, 218262, 244219, 271634, 300507, 330838, 362627, 395874, 430579, 466742, 504363, 543442, 583979, 625974, 669427, 714338
OFFSET
1,1
COMMENTS
The identity (531441*n^2 - 740664*n + 258065)^2 - (729*n^2 - 1016*n + 354)*(19683*n - 13716)^2 = 1 can be written as A157667(n)^2 - a(n)*A157666(n)^2 = 1.
The continued fraction expansion of sqrt(a(n)) is [27*n-19; {5, 2, 1, 1, 27*n-20, 1, 1, 2, 5, 54*n-38}]. - Magus K. Chu, Nov 20 2022
LINKS
Vincenzo Librandi, X^2-AY^2=1 [Dead link]
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(67 + 1037*x + 354*x^2)/(1-x)^3.
E.g.f.: (1 - 287*x + 729*x^2)*exp(x) - 354. - G. C. Greubel, Nov 17 2018
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {67, 1238, 3867}, 40]
PROG
(Magma) I:=[67, 1238, 3867]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n) = 729*n^2 - 1016*n + 354.
(Sage) [729*n^2 - 1016*n + 354 for n in (1..40)] # G. C. Greubel, Nov 17 2018
(GAP) List([1..40], n -> 729*n^2 - 1016*n + 354); # G. C. Greubel, Nov 17 2018
CROSSREFS
Sequence in context: A093267 A032651 A322880 * A231193 A078850 A092795
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 04 2009
STATUS
approved