login
A157268
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2^k if k <= floor(n/2) otherwise 2^(n-k), and m = 1, read by rows.
23
1, 1, 1, 1, 6, 1, 1, 17, 17, 1, 1, 40, 126, 40, 1, 1, 87, 606, 606, 87, 1, 1, 182, 2413, 5856, 2413, 182, 1, 1, 373, 8679, 40337, 40337, 8679, 373, 1, 1, 756, 29376, 232726, 497066, 232726, 29376, 756, 1, 1, 1523, 95668, 1205968, 4527078, 4527078, 1205968, 95668, 1523, 1
OFFSET
0,5
FORMULA
T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2^k if k <= floor(n/2) otherwise 2^(n-k), and m = 1.
T(n, n-k, m) = T(n, k, m).
T(n, 1, 1) = A101945(n-1), n >= 1. - G. C. Greubel, Feb 04 2022
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 17, 17, 1;
1, 40, 126, 40, 1;
1, 87, 606, 606, 87, 1;
1, 182, 2413, 5856, 2413, 182, 1;
1, 373, 8679, 40337, 40337, 8679, 373, 1;
1, 756, 29376, 232726, 497066, 232726, 29376, 756, 1;
1, 1523, 95668, 1205968, 4527078, 4527078, 1205968, 95668, 1523, 1;
MATHEMATICA
f[n_, k_]:= If[k<=Floor[n/2], 2^k, 2^(n-k)];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m] + (m*k+1)*T[n-1, k, m] + m*f[n, k]*T[n-2, k-1, m]];
Table[T[n, k, 1], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 04 2022 *)
PROG
(Sage)
def f(n, k): return 2^k if (k <= n//2) else 2^(n-k)
@CachedFunction
def T(n, k, m): # A157207
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1, k-1, m) + (m*k+1)*T(n-1, k, m) + m*f(n, k)*T(n-2, k-1, m)
flatten([[T(n, k, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 04 2022
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 26 2009
EXTENSIONS
Edited by G. C. Greubel, Feb 04 2022
STATUS
approved