login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157069
Number of integer sequences of length n+1 with sum zero and sum of absolute values 40.
1
2, 120, 4002, 93500, 1687002, 24836196, 309182762, 3337508646, 31830097752, 272125000774, 2109875558208, 14977318285254, 98118326104708, 597217934730774, 3397036441760412, 18148572883826236, 91470993083858322, 436643312483178036, 1981038544180652162
OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (41, -820, 10660, -101270, 749398, -4496388, 22481940, -95548245, 350343565, -1121099408, 3159461968, -7898654920, 17620076360, -35240152720, 63432274896, -103077446706, 151584480450, -202112640600, 244662670200, -269128937220, 269128937220, -244662670200, 202112640600, -151584480450, 103077446706, -63432274896, 35240152720, -17620076360, 7898654920, -3159461968, 1121099408, -350343565, 95548245, -22481940, 4496388, -749398, 101270, -10660, 820, -41, 1).
FORMULA
a(n) = T(n,20); T(n,k) = Sum_{i=1..n} binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k).
From G. C. Greubel, Jan 25 2022: (Start)
a(n) = (n+1)*binomial(n+19, 20)*Hypergeometric3F2([-19, -n, 1-n], [2, -n-19], 1).
a(n) = (137846528820/40!)*n*(n+1)*(295950609069496384270872084480000000 + 768802633735657375654446366720000000*n + 1329504929585504813849213140992000000*n^2 + 1290742342817244773843889039605760000*n^3 + 1094357439529328748458516078002176000*n^4 + 612766113778575140689735509285273600*n^5 + 334228753141512703020765378377809920*n^6 + 125103295909205358813292403873120256*n^7 + 49218727808847235410751174949228544*n^8 + 13269339361037181895414921845144576*n^9 + 4016584445427935868170163264804864*n^10 + 815165270428049073818572136963328*n^11 + 197974483136507211917478313071872*n^12 + 31108483670185057904409322050688*n^13 + 6244038933930696351877891958272*n^14 + 773683666573321735532607476256*n^15 + 131217385198850594964429765744*n^16 + 12969478215579974430537627276*n^17 + 1890935510804343168840278104*n^18 + 150029328423053669455781465*n^19 + 19066083072333125878657535*n^20 + 1216465853960978843551515*n^21 + 136285407600184771625385*n^22 + 6973959244303571061060*n^23 + 695382022718273834940*n^24 + 28325593615993410660*n^25 + 2534141220949541220*n^26 + 81059848291860174*n^27 + 6552284226337026*n^28 + 160984848978954*n^29 + 11828920639006*n^30 + 215437887572*n^31 + 14466923228*n^32 + 183962712*n^33 + 11343228*n^34 + 89889*n^35 + 5111*n^36 + 19*n^37 + n^38).
G.f.: 2*x*(1 + 19*x + 361*x^2 + 3249*x^3 + 29241*x^4 + 165699*x^5 + 938961*x^6 + 3755844*x^7 + 15023376*x^8 + 45070128*x^9 + 135210384*x^10 + 315490896*x^11 + 736145424*x^12 + 1367127216*x^13 + 2538950544*x^14 + 3808425816*x^15 + 5712638724*x^16 + 6982113996*x^17 + 8533694884*x^18 + 8533694884*x^19 + 8533694884*x^20 + 6982113996*x^21 + 5712638724*x^22 + 3808425816*x^23 + 2538950544*x^24 + 1367127216*x^25 + 736145424*x^26 + 315490896*x^27 + 135210384*x^28 + 45070128*x^29 + 15023376*x^30 + 3755844*x^31 + 938961*x^32 + 165699*x^33 + 29241*x^34 + 3249*x^35 + 361*x^36 + 19*x^37 + x^38)/(1-x)^41. (End)
MATHEMATICA
A103881[n_, k_]:= (n+1)*Binomial[n+k-1, k]*HypergeometricPFQ[{1-n, -n, 1-k}, {2, 1-n - k}, 1];
A157069[n_]:= A103881[n, 20];
Table[A157069[n], {n, 50}] (* G. C. Greubel, Jan 25 2022 *)
PROG
(Sage)
def A103881(n, k): return sum( binomial(n+1, i)*binomial(k-1, i-1)*binomial(n-i+k, k) for i in (0..n) )
def A157069(n): return A103881(n, 20)
[A157069(n) for n in (1..50)] # G. C. Greubel, Jan 25 2022
CROSSREFS
Sequence in context: A102355 A206355 A360607 * A362459 A077540 A272180
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 22 2009
STATUS
approved