login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157044
Triangle read by rows: T(n,k) = number of partitions of n into exactly k parts, each <= k.
2
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 2, 1, 1, 0, 0, 2, 2, 1, 1, 0, 0, 2, 3, 2, 1, 1, 0, 0, 1, 4, 3, 2, 1, 1, 0, 0, 1, 4, 5, 3, 2, 1, 1, 0, 0, 0, 5, 6, 5, 3, 2, 1, 1, 0, 0, 0, 4, 8, 7, 5, 3, 2, 1, 1, 0, 0, 0, 4, 9, 10, 7, 5, 3, 2, 1, 1, 0, 0, 0, 3, 11, 12, 11, 7, 5, 3, 2, 1, 1, 0, 0, 0, 2, 11, 16, 14, 11, 7, 5
OFFSET
1,13
COMMENTS
Also equals the number of partitions of n-1 into exactly k-1 parts, each <= k+1; equality reported by Franklin T. Adams-Watters.
Comment from N. J. A. Sloane: This is a special case of the fact that the number of partitions of a-c into exactly b-1 parts none exceeding c equals the number of partitions of a-b into exactly c-1 parts none exceeding b. See Andrews reference.
Row sums equal A064174; read backwards, rows approach the partition numbers A000041.
REFERENCES
George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976 (Theorem 1.5).
EXAMPLE
Table begins:
1
0,1
0,1,1
0,1,1,1
0,0,2,1,1
0,0,2,2,1,1
0,0,2,3,2,1,1
0,0,1,4,3,2,1,1
0,0,1,4,5,3,2,1,1
0,0,0,5,6,5,3,2,1,1
0,0,0,4,8,7,5,3,2,1,1
0,0,0,4,9,10,7,5,3,2,1,1
0,0,0,3,11,12,11,7,5,3,2,1,1
0,0,0,2,11,16,14,11,7,5,3,2,1,1
0,0,0,1,12,19,19,15,11,7,5,3,2,1,1
0,0,0,1,11,23,24,21,15,11,7,5,3,2,1,1
0,0,0,0,11,25,31,27,22,15,11,7,5,3,2,1,1
0,0,0,0,9,29,37,36,29,22,15,11,7,5,3,2,1,1
0,0,0,0,8,30,46,45,39,30,22,15,11,7,5,3,2,1,1
0,0,0,0,6,32,52,58,50,41,30,22,15,11,7,5,3,2,1,1
0,0,0,0,5,32,61,70,66,53,42,30,22,15,11,7,5,3,2,1,1
0,0,0,0,3,32,68,86,82,71,55,42,30,22,15,11,7,5,3,2,1,1
0,0,0,0,2,30,76,101,104,90,74,56,42,30,22,15,11,7,5,3,2,1,1
0,0,0,0,1,29,81,120,127,116,95,76,56,42,30,22,15,11,7,5,3,2,1,1
a(8,4)=4 since {2,2,2,2}, {3,2,2,1}, {3,3,1,1}, {4,2,1,1} are the partitions of 8 in exactly 4 parts <=4.
MATHEMATICA
Table[T[n-1, k-1, k+1]-T[n-1, k-2, k+1], {n, 20}, {k, n}] with T[n, a, b] as defined in A047993.
<<DiscreteMath`Combinatorica`
partitionexact[ n_, m_ ]:=TransposePartition/@(Prepend[ #, m ]&/@Partitions[ n-m, m ] )
Table[Length@Select[partitionexact[n, k], Max[ # ]<=k&], {n, 1, 24}, {k, n}]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Wouter Meeussen, Feb 22 2009
STATUS
approved