login
A156845
a(n) = 12167*n - 8579.
4
3588, 15755, 27922, 40089, 52256, 64423, 76590, 88757, 100924, 113091, 125258, 137425, 149592, 161759, 173926, 186093, 198260, 210427, 222594, 234761, 246928, 259095, 271262, 283429, 295596, 307763, 319930, 332097, 344264, 356431, 368598
OFFSET
1,1
COMMENTS
The identity (279841*n^2-394634*n+139128)^2-(529*n^2-746*n+263)*(12167*n-8579)^2=1 can be written as A156844(n)^2-A156842(n)*a(n)^2=1.
FORMULA
a(n) = 2*a(n-1) -a(n-2).
G.f.: x*(3588+8579*x)/(x-1)^2.
MATHEMATICA
LinearRecurrence[{2, -1}, {3588, 15755}, 40]
PROG
(Magma) I:=[3588, 15755]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]];
(PARI) a(n)=12167*n-8579 \\ Charles R Greathouse IV, Dec 23 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 17 2009
STATUS
approved