OFFSET
1,1
COMMENTS
(-368, a(1)), (-357, a(2)), (-273, a(3)), (-245, a(4)), (-153, a(5)), (-140, a(6)), (-108, a(7)) and (A129010(n), a(n+7)) are solutions (x, y) to the Diophantine equation x^2+(x+833)^2 = y^2.
lim_{n -> oo} a(n)/a(n-15) = 3+2*sqrt(2).
lim_{n -> oo} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^4/((3+2*sqrt(2))*((19+6*sqrt(2))/17)^2) for n mod 15 = 1.
lim_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2))*((19+6*sqrt(2))/17)/((9+4*sqrt(2))/7)^3 for n mod 15 = {0, 2, 6, 11}.
lim_{n -> oo} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^2*((19+6*sqrt(2))/17)/(3+2*sqrt(2)) for n mod 15 = {3, 5, 8, 9, 12, 14}.
lim_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2))/(((9+4*sqrt(2))/7)*((19+6*sqrt(2))/17)^2) for n mod 15 = {4, 7, 10, 13}.
FORMULA
a(n) = 6*a(n-15)-a(n-30) for n > 30.
G.f.: (1-x)*(593 +1188*x+1811*x^2+2448*x^3+3145*x^4+3852*x^5+4585*x^6+5418*x^7+6383*x^8+7398*x^9+8435*x^10+9660*x^11+10955*x^12+12502*x^13+14087*x^14+12502*x^15+10955*x^16+9660*x^17+8435*x^18+7398*x^19+6383*x^20+5418*x^21+4585*x^22+3852*x^23+3145*x^24+2448*x^25+1811*x^26+1188*x^27+593*x^28)/(1-6*x^15+x^30).
EXAMPLE
PROG
(PARI) {forstep(n=-400, 26000, [3, 1], if(issquare(2*n^2+1666*n+693889, &k), print1(k, ", ")))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Feb 17 2009
STATUS
approved