login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^4 + 5*n^2 + 4.
5

%I #32 Sep 04 2024 19:05:22

%S 4,10,40,130,340,754,1480,2650,4420,6970,10504,15250,21460,29410,

%T 39400,51754,66820,84970,106600,132130,162004,196690,236680,282490,

%U 334660,393754,460360,535090,618580,711490,814504,928330,1053700,1191370

%N a(n) = n^4 + 5*n^2 + 4.

%H Shawn A. Broyles, <a href="/A156798/b156798.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F a(n) = A002522(n)*A087475(n) = A000290(n) + A000290(A059100(n)) = A028552(A002522(n)).

%F a(n) = (n^2 + 1)*(n^2 + 4) = n^2 + (n^2 + 2)^2.

%F G.f.: 2*(2 -5*x +15*x^2 -5*x^3 +5*x^4)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009; corrected by _R. J. Mathar_, Sep 16 2009

%F a(0)=4, a(1)=10, a(2)=40, a(3)=130, a(4)=340, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - _Harvey P. Dale_, May 04 2011

%F From _Amiram Eldar_, Jan 18 2021: (Start)

%F Sum_{n>=0} 1/a(n) = (1 + Pi*coth(Pi))/8 - Pi*tanh(Pi)/24.

%F Sum_{n>=0} (-1)^n/a(n) = 1/8 + Pi*csch(Pi)/6 - Pi*csch(Pi)*sech(Pi)/24. (End)

%F E.g.f.: (4 + 6*x + 12*x^2 + 6*x^3 + x^4)*exp(x). - _G. C. Greubel_, Jun 10 2021

%t Table[n^4+5n^2+4, {n,0,40}]

%o (Magma) [n^4+5*n^2+4: n in [0..50]];

%o (PARI) a(n)=n^4+5*n^2+4

%o (Sage) [(n^2 +1)*(n^2 +4) for n in (0..50)] # _G. C. Greubel_, Jun 10 2021

%Y Cf. A000290, A002522, A059100, A087475.

%K nonn,easy

%O 0,1

%A _Reinhard Zumkeller_, Feb 16 2009