Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Mar 01 2021 17:53:47
%S 1,1,3,1,16,13,1,125,171,39,1,1296,2551,1091,101,1,16807,43653,28838,
%T 5498,243,1,262144,850809,780585,243790,24270,561,1,4782969,18689527,
%U 22278189,10073955,1733035,98661,1263,1
%N Triangle T(n,k) = ((-1)^(n+k)/(n+1))*Sum_{j=0..n} (-1)^j*j!*Stirling2(n, j)* binomial(n-j, k)*binomial(n+j, j), read by rows.
%C Row sums are A001761.
%H G. C. Greubel, <a href="/A156653/b156653.txt">Rows n = 0..50 of the triangle, flattened</a>
%F T(n, m) = [x^m] p(x,n) where p(x,n) = (1-x)^(2*n+1)/((n+1)*x^n)*Sum_{k>=0} (k+1)^n* binomial(k, n)*x^k.
%F T(n, m) = 1/(n+1)*Sum_{k=0..n} (-1)^(n+m+k)*k!*Stirling2(n,k)*C(n-k,m)*C(n+k,k). - _Vladimir Kruchinin_, May 05 2020
%F E.g.f. satisfies: A(x,y) = x*E(A(x,y),y), where E(x,y) is e.g.f. of Euler numbers of first kind A008292. - _Vladimir Kruchinin_, May 05 2020
%e Triangle begins as:
%e 1;
%e 1;
%e 3, 1;
%e 16, 13, 1;
%e 125, 171, 39, 1;
%e 1296, 2551, 1091, 101, 1;
%e 16807, 43653, 28838, 5498, 243, 1;
%e 262144, 850809, 780585, 243790, 24270, 561, 1;
%e 4782969, 18689527, 22278189, 10073955, 1733035, 98661, 1263, 1;
%e 100000000, 457947691, 677785807, 410994583, 106215619, 10996369, 379693, 2797, 1;
%t T[n_, m_]:= Sum[(-1)^(n+m+k) k! StirlingS2[n, k] Binomial[n-k, m] Binomial[n+k, k], {k, 0, n}]/(n+1);
%t Prepend[Table[T[n, m], {n,10}, {m, 0, n-1}]//Flatten, 1] (* _Peter Luschny_, May 11 2020 *)
%o (Maxima)
%o T(n,m):=sum(k!*stirling2(n,k)*(-1)^(n+m+k)*binomial(n-k,m)*binomial(n+k,k),k,0,n) /(n+1); /* _Vladimir Kruchinin_, May 11 2020 */
%o (Magma)
%o A156653:= func< n,k | ((-1)^(n+k)/(n+1))*(&+[ (-1)^j*Factorial(j)*StirlingSecond(n, j)*Binomial(n-j, k)*Binomial(n+j, j) : j in [0..n]]) >;
%o [1] cat [A156653(n,k): k in [0..n-1], n in [1..12]]; // _G. C. Greubel_, Mar 01 2021
%o (Sage)
%o def A156653(n,k): return ((-1)^(n+k)/(n+1))*sum( (-1)^j*factorial(j)* stirling_number2(n, j)*binomial(n-j, k)*binomial(n+j, j) for j in (0..n))
%o [1]+flatten([[A156653(n,k) for k in (0..n-1)] for n in (1..12)]) # _G. C. Greubel_, Mar 01 2021
%Y Cf. A001761, A008292, A048993.
%K nonn,tabf
%O 0,3
%A _Roger L. Bagula_, Feb 12 2009
%E New name by _Vladimir Kruchinin_, May 11 2020