login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156151
Primes p such that p+2 = 0 (mod pi(p)), where pi(p)=A000720(p) is the prime counting function.
2
2, 31, 353, 9559783, 9559843, 9559903, 3779853313, 27788573801, 204475054073, 204475054723, 1505578024807, 1505578025779, 241849345578351691, 1784546064357413809, 1784546064357419959, 97199410027249994623, 97199410027250046643, 97199410027250047453, 97199410027250123143
OFFSET
1,1
FORMULA
a(n) = A000040(A092044(n)).
PROG
(PARI) p=c=0; until(0, (2+p=nextprime(p+1))%c++ || print1(p", ")) \\ PARI syntax for || updated Feb 20 2020
CROSSREFS
Cf. A156152.
Sequence in context: A333935 A152278 A343415 * A231796 A218687 A071360
KEYWORD
nonn
AUTHOR
M. F. Hasler, Feb 04 2009
EXTENSIONS
More terms from Max Alekseyev, May 03 2009
a(13)-a(19) from Giovanni Resta, Feb 23 2020
STATUS
approved