OFFSET
0,3
COMMENTS
For n=1,2 these are just the tetrahedral numbers. a(n) is always at least 1/4 of the corresponding tetrahedral number, since each partition of this type gives up to four ordered partitions with the same cyclical order.
Diagonal sums of the irregular triangle A109439, for example a(0)=1, a(1)=1, a(2)=1+3, a(3)=1+3+3, a(4)=1+3+6+1. - Bob Selcoe, Feb 09 2014
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2, -1, 1, -1, -1, 1, -1, 2, -1).
FORMULA
G.f.: ( 1-x+3*x^2-x^3+x^4 ) / ( (1+x)*(1+x^2)*(1+x+x^2)*(x-1)^4 ). - Alois P. Heinz, Jun 14 2009
EXAMPLE
For n = 3 the a(3) = 7 compositions are: (3 0 0 0) (2 1 0 0) (2 0 1 0) (2 0 0 1) (1 1 1 0) (1 1 0 1) (1 0 1 1).
MAPLE
a:= proc(n) local m, r; m:= iquo(n, 12, 'r'); r:= r+1; (9 +(27 +72*m +18*r)*m +((9 +3*r) *r-12) /2)*m +[1, 1, 4, 7, 11, 17, 26, 35, 48, 63, 81, 102][r] end: seq(a(n), n=0..60); # Alois P. Heinz, Jun 14 2009
MATHEMATICA
LinearRecurrence[{2, -1, 1, -1, -1, 1, -1, 2, -1}, {1, 1, 4, 7, 11, 17, 26, 35, 48}, 60] (* Jean-François Alcover, May 17 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jack W Grahl, Feb 02 2009, Feb 11 2009
EXTENSIONS
More terms from Alois P. Heinz, Jun 14 2009
STATUS
approved