OFFSET
0,4
LINKS
G. C. Greubel, Rows n = 0..100 of triangle, flattened
FORMULA
Number triangle T(n,k) = Sum_{j=0..n+1} C(n+1-j,k+1)*C(k-1,j).
T(n, k) = binomial(n+1,k+1)*2F1(-(n-k), -(k-1); -(n+1); -1). - G. C. Greubel, Feb 18 2020
EXAMPLE
Triangle begins
1;
1, 1;
2, 3, 1;
2, 6, 5, 1;
3, 10, 14, 7, 1;
3, 15, 30, 26, 9, 1;
4, 21, 55, 70, 42, 11, 1;
MAPLE
seq(seq( add(binomial(k-1, j)*binomial(n-j+1, k+1), j=0..n+1), k=0..n), n=0..10); # G. C. Greubel, Feb 18 2020
MATHEMATICA
Table[Binomial[n+1, k+1]*Hypergeometric2F1[-n+k, -k+1, -n-1, -1], {n, 0, 5}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
PROG
(Magma) [ (&+[Binomial(k-1, j)*Binomial(n-j+1, k+1): j in [0..n+1]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
(Sage) [[ sum(binomial(k-1, j)*binomial(n-j+1, k+1) for j in (0..n+1)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 18 2020
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Jan 17 2009
EXTENSIONS
a(45)=0 removed by Georg Fischer, Feb 18 2020
STATUS
approved