login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154948
Riordan array ((1+x)/(1-x^2)^2, x(1+x)/(1-x)).
4
1, 1, 1, 2, 3, 1, 2, 6, 5, 1, 3, 10, 14, 7, 1, 3, 15, 30, 26, 9, 1, 4, 21, 55, 70, 42, 11, 1, 4, 28, 91, 155, 138, 62, 13, 1, 5, 36, 140, 301, 363, 242, 86, 15, 1, 5, 45, 204, 532, 819, 743, 390, 114, 17, 1, 6, 55, 285, 876, 1652, 1925, 1375, 590, 146, 19, 1
OFFSET
0,4
COMMENTS
Row sums are A113300(n+1). Diagonal sums are A154949.
Product of A154950 and A007318.
FORMULA
Number triangle T(n,k) = Sum_{j=0..n+1} C(n+1-j,k+1)*C(k-1,j).
T(n, k) = binomial(n+1,k+1)*2F1(-(n-k), -(k-1); -(n+1); -1). - G. C. Greubel, Feb 18 2020
EXAMPLE
Triangle begins
1;
1, 1;
2, 3, 1;
2, 6, 5, 1;
3, 10, 14, 7, 1;
3, 15, 30, 26, 9, 1;
4, 21, 55, 70, 42, 11, 1;
MAPLE
seq(seq( add(binomial(k-1, j)*binomial(n-j+1, k+1), j=0..n+1), k=0..n), n=0..10); # G. C. Greubel, Feb 18 2020
MATHEMATICA
Table[Binomial[n+1, k+1]*Hypergeometric2F1[-n+k, -k+1, -n-1, -1], {n, 0, 5}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
PROG
(Magma) [ (&+[Binomial(k-1, j)*Binomial(n-j+1, k+1): j in [0..n+1]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
(Sage) [[ sum(binomial(k-1, j)*binomial(n-j+1, k+1) for j in (0..n+1)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 18 2020
CROSSREFS
Sequence in context: A181176 A131108 A128255 * A109091 A138507 A209579
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Jan 17 2009
EXTENSIONS
a(45)=0 removed by Georg Fischer, Feb 18 2020
STATUS
approved