OFFSET
0,1
LINKS
G. C. Greubel, Rows n = 0..40 of triangle, flattened
A. Lakhtakia, R. Messier, V. K. Varadan, V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2502, Fig. 3.
FORMULA
Let r = 2 and q = 1 then b(n) = the coefficients of p(x, n) = 2^n*(1 - x)^(n + 1)* LerchPhi(x, -n, 1/2). The triangle is then defined by T(n, m) = (r^(n-m)*q^m + r^m*q^(n-m))*b(n).
EXAMPLE
Triangle begins as:
2;
3, 3;
5, 24, 5;
9, 138, 138, 9;
17, 760, 1840, 760, 17;
33, 4266, 20184, 20184, 4266, 33;
65, 24548, 210860, 376768, 210860, 24548, 65;
129, 143814, 2183652, 6233352, 6233352, 2183652, 143814, 129;
MATHEMATICA
r = 2; q = 1; p[x_, n_] = 2^n*(1-x)^(n+1)*LerchPhi[x, -n, 1/2];
b:= Table[CoefficientList[Series[p[x, n], {x, 0, 30}], x], {n, 0, 20}];
T[n_, m_]:= (r^(n-m)*q^m + r^m*q^(n-m))*b[[n+1]][[m+1]];
Table[T[n, m], {n, 0, 12}, {m, 0, n}]//Flatten (* modified by G. C. Greubel, May 08 2019 *)
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula and Gary W. Adamson, Jan 14 2009
EXTENSIONS
Edited by G. C. Greubel, May 08 2019
STATUS
approved