login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154420
Maximal coefficient of MacMahon polynomial (cf. A060187) p(x,n)=2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2]; that is, a(n) = Max(coefficients(p(x,n))).
2
1, 1, 6, 23, 230, 1682, 23548, 259723, 4675014, 69413294, 1527092468, 28588019814, 743288515164, 16818059163492, 504541774904760, 13397724585164019, 455522635895576646, 13892023109165902550, 527896878148304296900
OFFSET
0,3
COMMENTS
Since the center is the maximum in the Pascal, Eulerian and MacMahon triangles, a(n)=MacMahon[n,Floor[n/2]]
LINKS
FORMULA
a(n) ~ sqrt(3) * 2^(n+1) * n^n / exp(n). - Vaclav Kotesovec, Oct 28 2021
MAPLE
gf := proc(n, k) local f; f := (x, t) -> x*exp(t*x/k)/(1-x*exp(t*x));
series(f(x, t), t, n+2); ((1-x)/x)^(n+1)*k^n*n!*coeff(%, t, n):
collect(simplify(%), x) end:
seq(coeff(gf(n, 1), x, iquo(n, 2)), n=0..18); # Middle Eulerian numbers, A006551.
seq(coeff(gf(n, 2), x, iquo(n, 2)), n=0..18); # Middle midpoint Eulerian numbers.
# Peter Luschny, May 02 2013
MATHEMATICA
p[x_, n_] = 2^n*(1 - x)^(n + 1)* LerchPhi[x, -n, 1/2];
Table[Max[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 30}]
CROSSREFS
Sequence in context: A219168 A013260 A013266 * A255305 A339628 A304271
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jan 09 2009
EXTENSIONS
Edited by N. J. A. Sloane, Jan 15 2009
STATUS
approved