OFFSET
1,2
COMMENTS
If a(n)=x and a(n+1)=y, then 16=(x^2+y^2)/(xy+1).
In general, the sequence a(1)=0, a(2)=U; a(n+2)=U^2*a(n+1)-a(n) has the property that "If a(n)=x and a(n+1)=y then (x^2+y^2)/(xy+1)=U^2".
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..800
Index entries for linear recurrences with constant coefficients, signature (16,-1).
FORMULA
MATHEMATICA
Nest[Append[#, 16Last[#]-#[[-2]]]&, {0, 4}, 20] (* or *) Rest[CoefficientList[Series[4x^2/(1-16x+x^2), {x, 0, 22}], x]] (* Harvey P. Dale, Apr 17 2011 *)
LinearRecurrence[{16, -1}, {0, 4}, 20] (* T. D. Noe, Apr 17 2011 *)
PROG
(Magma) I:=[0, 4]; [n le 2 select I[n] else 16*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 25 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 04 2009
EXTENSIONS
375725376 replaced by 266375725376 - R. J. Mathar, Jan 07 2009
Edited by N. J. A. Sloane, Jun 23 2010 at the suggestion of Joerg Arndt.
STATUS
approved