login
A153784
4 times heptagonal numbers: 2n(5n-3).
3
0, 4, 28, 72, 136, 220, 324, 448, 592, 756, 940, 1144, 1368, 1612, 1876, 2160, 2464, 2788, 3132, 3496, 3880, 4284, 4708, 5152, 5616, 6100, 6604, 7128, 7672, 8236, 8820, 9424, 10048, 10692, 11356, 12040, 12744, 13468, 14212, 14976, 15760
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 4,..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012
FORMULA
a(n) = 10n^2 - 6n = A000566(n)*4 = A135706(n)*2.
a(n)=20*n+a(n-1)-16 (with a(0)=0) - Vincenzo Librandi, Aug 03 2010
a(n) = A087348(n) - 1, n >= 1. - Omar E. Pol, Jul 18 2012
a(0)=0, a(1)=4, a(2)=28, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Mar 19 2015
MATHEMATICA
s=0; lst={s}; Do[s+=n; AppendTo[lst, s], {n, 4, 6!, 20}]; lst (* Vladimir Joseph Stephan Orlovsky, Apr 02 2009 *)
Table[2n(5n-3), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 4, 28}, 50] (* Harvey P. Dale, Mar 19 2015 *)
PROG
(PARI) a(n)=2*n*(5*n-3) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Jan 02 2009
STATUS
approved