OFFSET
1,2
COMMENTS
Provided A002379(n) = floor((3^n-1)/(2^n-1)) holds (which is proved only for 1 < n <= 305000), then a(n) > 1.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..8005
FORMULA
a(n) = ceiling(((f + 1)*(2^n) - 3^n)/f) where f = floor(3^n/2^n). - David A. Corneth, Mar 27 2019
EXAMPLE
a(5)=2, since floor((3^5-1)/(2^5-1)) = floor(242/31) = 7 = floor(243/32) = floor(3^5/2^5), but floor((3^5-2)/(2^5-2)) = floor(241/30) = 8 > 7.
MATHEMATICA
Table[n3 = 3^n; n2 = 2^n; m = 1;
While[Floor[(n3 - m)/(n2 - m)] <= Floor[n3/n2], m++]; m, {n, 1, 50}] (* Robert Price, Mar 27 2019 *)
PROG
(PARI) a(n) = my(f = floor(3^n/2^n)); ceil(((f + 1)*(2^n) - 3^n)/f) \\ David A. Corneth, Mar 27 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Hieronymus Fischer, Jan 06 2009
STATUS
approved