login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (j+1)*prime(j)*T(n-2, k-1) with j=4, read by rows.
14

%I #7 Mar 05 2021 10:16:37

%S 2,7,7,2,94,2,2,341,341,2,2,413,3972,413,2,2,485,16320,16320,485,2,2,

%T 557,31260,171660,31260,557,2,2,629,48792,774120,774120,48792,629,2,2,

%U 701,68916,1917012,7556340,1917012,68916,701,2,2,773,91632,3693648,36567552,36567552,3693648,91632,773,2

%N Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (j+1)*prime(j)*T(n-2, k-1) with j=4, read by rows.

%H G. C. Greubel, <a href="/A153649/b153649.txt">Rows n = 1..50 of the triangle, flattened</a>

%F T(n, k) = T(n-1, k) + T(n-1, k-1) + (j+1)*prime(j)*T(n-2, k-1) with j=4.

%F From _G. C. Greubel_, Mar 04 2021: (Start)

%F T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (1,1,4).

%F Sum_{k=0..n} T(n,k,p,q,j) = 2*prime(j)^(n-1), for (p,q,j)=(1,1,4), = 2*A000420(n-1). (End)

%e Triangle begins as:

%e 2;

%e 7, 7;

%e 2, 94, 2;

%e 2, 341, 341, 2;

%e 2, 413, 3972, 413, 2;

%e 2, 485, 16320, 16320, 485, 2;

%e 2, 557, 31260, 171660, 31260, 557, 2;

%e 2, 629, 48792, 774120, 774120, 48792, 629, 2;

%e 2, 701, 68916, 1917012, 7556340, 1917012, 68916, 701, 2;

%e 2, 773, 91632, 3693648, 36567552, 36567552, 3693648, 91632, 773, 2;

%t T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];

%t Table[T[n,k,1,1,4], {n,12}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Mar 04 2021 *)

%o (Sage)

%o @CachedFunction

%o def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)

%o def T(n,k,p,q,j):

%o if (n==2): return nth_prime(j)

%o elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)

%o elif (k==1 or k==n): return 2

%o else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)

%o flatten([[T(n,k,1,1,4) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Mar 04 2021

%o (Magma)

%o f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;

%o function T(n,k,p,q,j)

%o if n eq 2 then return NthPrime(j);

%o elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);

%o elif (k eq 1 or k eq n) then return 2;

%o else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);

%o end if; return T;

%o end function;

%o [T(n,k,1,1,4): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Mar 04 2021

%Y Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), this sequence (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), A153657 (2,7,10).

%Y Cf. A000420 (powers of 7).

%K nonn,tabl

%O 1,1

%A _Roger L. Bagula_, Dec 30 2008

%E Edited by _G. C. Greubel_, Mar 04 2021