login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3^n*(n + 2)!.
2

%I #17 Sep 08 2022 08:45:40

%S 2,18,216,3240,58320,1224720,29393280,793618560,23808556800,

%T 785682374400,28284565478400,1103098053657600,46330118253619200,

%U 2084855321412864000,100073055427817472000,5103725826818691072000,275601194648209317888000

%N a(n) = 3^n*(n + 2)!.

%H G. C. Greubel, <a href="/A153647/b153647.txt">Table of n, a(n) for n = 0..300</a>

%F From _G. C. Greubel_, Mar 03 2021: (Start)

%F a(n) = 2*A051606(n).

%F G.f.: 2*Hypergeometric2F0([1, 3]; --; 3*x).

%F E.g.f.: 2/(1-3*x)^3. (End)

%F D-finite with recurrence a(n) +3*(-n-2)*a(n-1)=0. - _R. J. Mathar_, Aug 20 2021

%p A153647:= n-> 3^n*(n+2)!; seq(A153647(n), n=0..20); # _G. C. Greubel_, Mar 03 2021

%t Table[3^n*(n + 2)!, {n, 0, 30}]

%o (Magma) [3^n*Factorial(n + 2): n in [0..20]]; // _Vincenzo Librandi_, Aug 24 2016

%o (Sage) [3^n*factorial(n+2) for n in (0..20)] # _G. C. Greubel_, Mar 03 2021

%o (PARI) a(n) = 3^n*(n + 2)!; \\ _Michel Marcus_, Mar 03 2021

%Y Cf. A051606.

%K nonn,easy

%O 0,1

%A _Roger L. Bagula_ and _Gary W. Adamson_, Dec 30 2008