login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153233
a(n) = sum_{i+j+k=n} (-1)^k*binomial(3*i+2*j+k,k) * (i/(2*j+i)) * binomial(2*j+i,j) *2^(i+j) * Catalan(i).
1
1, 1, 5, 27, 157, 957, 6025, 38847, 255161, 1701297, 11485549, 78362091, 539518389, 3744085725, 26164480017, 183976884639, 1300803253617, 9242988233025, 65971342007125, 472779083030619, 3400653965846093, 24543058771387485, 177678278627756185
OFFSET
0,3
COMMENTS
a(n) is also the number of {du,h}-avoiding generalized noncrossing trees.
The expression i/(2*j+i) *binomial(2*j+i,j) =A009766(i+j-1,j), is to be interpreted as 1 if i=j=0.
REFERENCES
Y. Sun, Z. Wang, String pattern avoidance in generalized non-crossing trees, Disc. Math. Theor. Comp. Sci. 11 (1) (2009) 79-94, proposition 3.4
MAPLE
A153233aux := proc(i, j)
if i=0 and j = 0 then
1;
else
i/(2*j+i)*binomial(2*j+i, j) ;
end if;
end proc:
A153233 := proc(n)
a := 0 ;
for i from 0 to n do
for j from 0 to n-i do
k := n-i-j ;
if k >= 0 then
a := a+ (-1)^k *binomial(3*i+2*j+k, k) *2^(i+j) *A000108(i) *A153233aux(i, j) ;
end if:
end do:
end do:
a ;
end proc: # R. J. Mathar, Dec 17 2012
CROSSREFS
Sequence in context: A052227 A357227 A101386 * A084076 A355252 A337011
KEYWORD
nonn
AUTHOR
Yidong Sun (sydmath(AT)yahoo.com.cn), Dec 21 2008
STATUS
approved