login
A153061
a(-1) = 2, a(n) = a(n-1)^2 + n.
4
4, 17, 291, 84684, 7171379860, 51428689096413619605, 2644910062175573125355281735337640356031, 6995549236997594095768769895625713364190838574177475661857423797590740438072968
OFFSET
0,1
FORMULA
a(n) ~ c^(2^n), where c = 4.1302388785110411646102486678455962713882427692215219090697122047307672779... . - Vaclav Kotesovec, Dec 18 2014
MATHEMATICA
a=2; lst={}; Do[a=a^2+n; AppendTo[lst, a], {n, 0, 10}]; lst
RecurrenceTable[{a[0]==4, a[n]==a[n-1]^2+n}, a, {n, 10}] (* Harvey P. Dale, Oct 17 2013 *)
PROG
(Python)
def aupton(terms):
alst = [4]
for n in range(1, terms): alst.append(alst[-1]**2 + n)
return alst
print(aupton(8)) # Michael S. Branicky, Apr 17 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved