login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152661
Number of permutations of [n] for which the first two entries have the same parity (n>=2).
1
0, 2, 8, 48, 288, 2160, 17280, 161280, 1612800, 18144000, 217728000, 2874009600, 40236134400, 610248038400, 9763968614400, 167382319104000, 3012881743872000, 57621363351552000, 1152427267031040000, 24329020081766400000, 535238441798860800000
OFFSET
2,2
COMMENTS
a(n) is also the number of 3-term arithmetic progressions of consecutive entries in all permutations of {1,2,...,n}. Example: a(4)=8 because we have 12'3'4, 412'3, 143'2, 23'41, 32'14, 43'2'1 (the mid-terms of the arithmetic progressions are marked). [Emeric Deutsch, Aug 31 2009]
FORMULA
a(n) = A152660(n,1).
a(2n) = 2*(n!)^2*binomial(2*n-2,n);
a(2n+1) = n!*(n+1)!*binomial(2n,n-1).
Conjecture: (-n+3)*a(n) +2*(n-2)*a(n-1) +(n-1)*(n-2)*(n-3)*a(n-2)=0. - R. J. Mathar, Apr 20 2015
Conjecture: a(n) = 2*A077613(n-1). - R. J. Mathar, Apr 20 2015
EXAMPLE
a(4)=8 because we have 1324, 1342, 3124, 3142, 2413, 2431, 4213 and 4231.
MAPLE
a := proc (n) if `mod`(n, 2) = 0 then 2*factorial((1/2)*n)^2*binomial(n-2, (1/2)*n) else factorial((1/2)*n-1/2)*factorial((1/2)*n+1/2)*binomial(n-1, (1/2)*n-3/2) end if end proc: seq(a(n), n = 2 .. 22);
MATHEMATICA
a[n0_?EvenQ] := With[{n = n0/2}, 2 (n!)^2*Binomial[2*n - 2, n]];
a[n1_?OddQ] := With[{n = (n1 - 1)/2}, n! (n + 1)! Binomial[2 n, n - 1]];
Table[a[n], {n, 2, 22}] (* Jean-François Alcover, Nov 28 2017 *)
CROSSREFS
Cf. A152660.
Sequence in context: A009693 A192251 A104190 * A177066 A356429 A228568
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 12 2008
STATUS
approved