login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152656
Triangle read by rows: denominators of polynomials from A000142: P(0,x) = 1, P(n,x) = 1/n! + x*Sum_{i=0..n-1} P(n-i-1)/i!. Numerators are A152650.
7
1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 24, 3, 2, 1, 1, 120, 3, 2, 1, 1, 1, 720, 15, 8, 3, 2, 1, 1, 5040, 45, 40, 3, 6, 1, 1, 1, 40320, 315, 80, 15, 24, 1, 2, 1, 1, 362880, 315, 560, 45, 24, 1, 6, 1, 1, 1, 3628800, 2835, 4480, 315, 144, 5, 24, 3, 2, 1, 1
OFFSET
0,4
COMMENTS
a(n) is the last sequence of a trio with, first, A141412 and, second, A142048 (denominators).
LINKS
Vincenzo Librandi, Rows n = 0..100, flattened
EXAMPLE
Contribution from Vincenzo Librandi, Dec 16 2012: (Start)
Triangle begins:
1,
1, 1,
2, 1, 1,
6, 1, 1, 1,
24, 3, 2, 1, 1,
120, 3, 2, 1, 1, 1,
720, 15, 8, 3, 2, 1, 1,
5040, 45, 40, 3, 6, 1, 1, 1,
40320, 315, 80, 15, 24, 1, 2, 1, 1,
362880, 315, 560, 45, 24, 1, 6, 1, 1, 1,
3628800, 2835, 4480, 315, 144, 5, 24, 3, 2, 1, 1,
...
First column: A000142; second column: A049606. (End)
MATHEMATICA
ClearAll[u, p]; u[n_] := 1/n!; p[0][x_] := u[0]; p[n_][x_] := p[n][x] = u[n] + x*Sum[u[i]*p[n-i-1][x] , {i, 0, n-1}] // Expand; row[n_] := CoefficientList[p[n][x], x]; Table[row[n], {n, 0, 10}] // Flatten // Denominator (* Jean-François Alcover, Oct 02 2012 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul Curtz, Dec 10 2008
EXTENSIONS
More terms from Jean-François Alcover, Oct 02 2012
STATUS
approved