login
A152405
Square array, read by antidiagonals, where row n+1 is generated from row n by first removing terms in row n at positions {m*(m+1)/2, m>=0} and then taking partial sums, starting with all 1's in row 0.
5
1, 1, 1, 3, 2, 1, 14, 8, 3, 1, 86, 45, 14, 4, 1, 645, 318, 86, 22, 5, 1, 5662, 2671, 645, 152, 31, 6, 1, 56632, 25805, 5662, 1251, 232, 41, 7, 1, 633545, 280609, 56632, 11869, 2026, 327, 53, 8, 1, 7820115, 3381993, 633545, 126987, 20143, 2991, 457, 66, 9, 1
OFFSET
0,4
EXAMPLE
Table begins:
(1),(1),1,(1),1,1,(1),1,1,1,(1),1,1,1,1,(1),1,...;
(1),(2),3,(4),5,6,(7),8,9,10,(11),12,13,14,15,(16),...;
(3),(8),14,(22),31,41,(53),66,80,95,(112),130,149,169,190,...;
(14),(45),86,(152),232,327,(457),606,775,965,(1202),1464,1752,2067,...;
(86),(318),645,(1251),2026,2991,(4455),6207,8274,10684,(13934),17653,...;
(645),(2671),5662,(11869),20143,30827,(48480),70355,96990,128959,...;
(5662),(25805),56632,(126987),223977,352936,(582183),874664,1240239,...;
(56632),(280609),633545,(1508209),2748448,4438122,(7641111),11831184,...;
(633545),(3381993),7820115,(19651299),36837937,60743909,...; ...
where row n equals the partial sums of row n-1 after removing terms
at positions {m*(m+1)/2, m>=0} (marked by parenthesis in above table).
For example, to generate row 3 from row 2:
[3,8, 14, 22, 31,41, 53, 66,80,95, 112, 130,...]
remove terms at positions {0,1,3,6,10,...}, yielding:
[14, 31,41, 66,80,95, 130,149,169,190, ...]
then take partial sums to obtain row 3:
[14, 45,86, 152,232,327, 457,606,775,965, ...].
Continuing in this way generates all rows of this table.
RELATION TO POWERS OF A SPECIAL TRIANGULAR MATRIX.
Columns 0 and 1 are found in triangle T=A152400, which begins:
1;
1, 1;
3, 2, 1;
14, 8, 3, 1;
86, 45, 15, 4, 1;
645, 318, 99, 24, 5, 1;
5662, 2671, 794, 182, 35, 6, 1;
56632, 25805, 7414, 1636, 300, 48, 7, 1; ...
where column k of T = column 0 of matrix power T^(k+1) for k>=0.
Furthermore, matrix powers of triangle T=A152400 satisfy:
column k of T^(j+1) = column j of T^(k+1) for all j>=0, k>=0.
Column 3 of this square array = column 1 of T^2:
1;
2, 1;
8, 4, 1;
45, 22, 6, 1;
318, 152, 42, 8, 1;
2671, 1251, 345, 68, 10, 1;
25805, 11869, 3253, 648, 100, 12, 1; ...
RELATED TRIANGLE A127714 begins:
1;
1, 1, 1;
1, 2, 2, 3, 3, 3;
1, 3, 5, 5, 8, 11, 11, 14, 14, 14;
1, 4, 9, 14, 14, 22, 33, 44, 44, 58, 72, 72, 86, 86, 86;...
where right border = column 0 of this square array.
PROG
(PARI) {T(n, k)=local(A=0, m=0, c=0, d=0); if(n==0, A=1, until(d>k, if(c==m*(m+1)/2, m+=1, A+=T(n-1, c); d+=1); c+=1)); A}
CROSSREFS
Cf. columns: A127715, A152401, A152404.
Cf. related triangles: A152400, A127714.
Sequence in context: A371461 A161133 A112911 * A152400 A291978 A342217
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 05 2008
STATUS
approved