OFFSET
0,4
COMMENTS
The binet solution came from Mathematica:
f[n_Integer] = Module[{a}, a[n] /. RSolve[{a[n] == a[n - 1] + a[n - 2] + a[n - 1]/10,a[0] == 1, a[1] == 1}, a[n], n][[1]] // FullSimplify].
I used coefficients{1/2,2/3} on the golden ration like roots to get my function.
REFERENCES
Ivars Peterson, The Jungles of Randomness, 1998, John Wiley and Sons, Inc., page 207
FORMULA
f(n)=(11/20 - Sqrt[512]/20)^n/3 + (2/3)*(11/20 + Sqrt[512]/20)^n;
a(n)=Mod[Floor[f(n)],10].
MATHEMATICA
g[n_] := (11/20 - Sqrt[512]/20)^n/3 + (2/3)*(11/20 + Sqrt[512]/20)^n;
Table[Mod[Floor[FullSimplify[Expand[g[n]]]], 10], {n, 0, 76}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Dec 02 2008
STATUS
approved