login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152304
Marsaglia-Zaman type binet solution rationalized: f(n)=(11/20 - Sqrt[512]/20)^n/3 + (2/3)*(11/20 + Sqrt[512]/20)^n; a(n)=Mod[Floor[f(n)],10].
0
1, 0, 1, 3, 5, 8, 5, 5, 2, 1, 0, 2, 0, 2, 2, 7, 9, 2, 8, 7, 5, 6, 7, 6, 3, 6, 8, 2, 2, 7, 9, 2, 4, 5, 5, 9, 2, 3, 7, 5, 4, 2, 5, 0, 2, 9, 5, 0, 0, 7, 6, 8, 7, 8, 2, 5, 8, 5, 0, 3, 5, 2, 7, 4, 3, 2, 6, 9, 7, 8, 3, 1, 9, 9, 3, 1
OFFSET
0,4
COMMENTS
The binet solution came from Mathematica:
f[n_Integer] = Module[{a}, a[n] /. RSolve[{a[n] == a[n - 1] + a[n - 2] + a[n - 1]/10,a[0] == 1, a[1] == 1}, a[n], n][[1]] // FullSimplify].
I used coefficients{1/2,2/3} on the golden ration like roots to get my function.
REFERENCES
Ivars Peterson, The Jungles of Randomness, 1998, John Wiley and Sons, Inc., page 207
FORMULA
f(n)=(11/20 - Sqrt[512]/20)^n/3 + (2/3)*(11/20 + Sqrt[512]/20)^n;
a(n)=Mod[Floor[f(n)],10].
MATHEMATICA
g[n_] := (11/20 - Sqrt[512]/20)^n/3 + (2/3)*(11/20 + Sqrt[512]/20)^n;
Table[Mod[Floor[FullSimplify[Expand[g[n]]]], 10], {n, 0, 76}]
CROSSREFS
Sequence in context: A212224 A020864 A359286 * A021902 A136188 A073334
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Dec 02 2008
STATUS
approved