login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152300
A symmetrical triangle of coefficients of polynomials: q(x,n)=((1 - x)^(2*n)/(n*x))*Sum[Binomial[k + n - 1, k]*k^n*x^k, {k, 0, Infinity}]; p(x,n)=q(x,n)+x^(n-1)*q(1/x,n); t(n,m)=coefficients(p(x,n)).
0
2, 3, 3, 10, 20, 10, 65, 145, 145, 65, 626, 1612, 1572, 1612, 626, 7777, 24549, 23114, 23114, 24549, 7777, 117650, 450564, 496974, 340664, 496974, 450564, 117650, 2097153, 9493425, 12990807, 7851015, 7851015, 12990807, 9493425, 2097153
OFFSET
1,1
COMMENTS
Row sums are: {2, 6, 40, 420, 6048, 110880, 2471040, 64864800, 1960358400, 67044257280,...}
FORMULA
q(x,n)=((1 - x)^(2*n)/(n*x))*Sum[Binomial[k + n - 1, k]*k^n*x^k, {k, 0, Infinity}];
p(x,n)=q(x,n)+x^(n-1)*q(1/x,n);
t(n,m)=coefficients(p(x,n)).
EXAMPLE
{2},
{3, 3},
{10, 20, 10},
{65, 145, 145, 65},
{626, 1612, 1572, 1612, 626},
{7777, 24549, 23114, 23114, 24549, 7777},
{117650, 450564, 496974, 340664, 496974, 450564, 117650},
{2097153, 9493425, 12990807, 7851015, 7851015, 12990807, 9493425, 2097153},
{43046722, 225161564, 376201696, 262869988, 145798460, 262869988, 376201696, 225161564, 43046722},
{1000000001, 5937430213, 11798197840, 10137490792, 4649009794, 4649009794, 10137490792, 11798197840, 5937430213, 1000000001}
MATHEMATICA
Clear[p, x, n, m];
p[x_, n_] := ((1 - x)^(2*n)/(n*x))*Sum[Binomial[k + n - 1, k]*k^n*x^k, {k, 0, Infinity}];
Table[(CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x] + Reverse[ CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]]), {n, 1, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A094416 A218868 A329874 * A117030 A155758 A009097
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Dec 02 2008
STATUS
approved