login
A152270
Let f(n)=Floor[Mod[10^k*(7/(4*k + 1) - 6/(4*k + 3) - 1/(4*k + 5)), 3]]; M0 = {{0, 1}, {1, 1/2}}; M = {{0, 2}, {2, 1}}; as Mh=M0.M.(M0+I*f[n]); v[(n)=Mh.v(n-1), then a(n) is the first element of v.
1
0, 1, -3, -13, 15, -37, 23, -125, -467, -2269, -2269, -12147, -66877, -66877, -66877, -66877, -370963, -2061725, -11464371, 17899313, 99555423, 99555423, -155471765, -864636987, 1350136841, 1350136841, -2108411107, -2108411107
OFFSET
0,3
LINKS
MATHEMATICA
f[k_] = Floor[Mod[10^k*(7/(4*k + 1) - 6/(4*k + 3) - 1/(4*k + 5)), 3]];
M0 = {{0, 1}, {1, 1/2}}; M = {{0, 2}, {2, 1}};
Mh[n_] := M0.(M.Inverse[f[n]*IdentityMatrix[2] + M0]);
v[0] = {0, 1};
v[n_] := v[n] = Mh[n].v[n - 1]
Table[ -v[n][[1]]/2, {n, 0, 30}]
CROSSREFS
Sequence in context: A146512 A082704 A353060 * A032919 A340018 A216044
KEYWORD
sign,uned,obsc,base
AUTHOR
STATUS
approved