OFFSET
0,4
FORMULA
a(n) = Product_{k=1..(n-1)/2} Sum_{j=0..4} (2*cos(k*Pi/n))^(2*j).
Empirical g.f.: (1 -15*x^2 -36*x^3 +31*x^4 +130*x^5 -81*x^6 -184*x^7 +265*x^8 -26*x^9 -149*x^10 +60*x^11 +59*x^12 -14*x^13 -15*x^14 -2*x^15 +x^16) / (1 -x -15*x^2 -25*x^3 +45*x^4 +95*x^5 -115*x^6 -105*x^7 +265*x^8 -105*x^9 -115*x^10 +95*x^11 +45*x^12 -25*x^13 -15*x^14 -x^15 +x^16). - Colin Barker, Apr 01 2016
MATHEMATICA
a = Table[Product[1 + 4*Cos[k*Pi/n]^2 + 16*Cos[k*Pi/n]^4 + 64*Cos[k*Pi/n]^6 + 256*Cos[k*Pi/n]^8, {k, 1, (n - 1)/2}], {n, 0, 30}]; Round[%] FullSimplify[ExpandAll[a]]
PROG
(PARI) a(n) = round(prod(k=1, (n-1)/2, 1 + 4*cos(k*Pi/n)^2 + 16*cos(k*Pi/n)^4 + 64*cos(k*Pi/n)^6 + 256*cos(k*Pi/n)^8)) \\ Colin Barker, Apr 01 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula and Gary W. Adamson, Nov 24 2008
EXTENSIONS
Name and formula corrected by Colin Barker, Apr 01 2016
STATUS
approved