login
A151944
Square array read by antidiagonals: T(m,n) = maximal number of moves required for the m X n generalization of the sliding block 15-puzzle (or fifteen-puzzle).
2
0, 1, 1, 2, 6, 2, 3, 21, 21, 3, 4, 36, 31, 36, 4, 5, 55, 53, 53, 55, 5, 6, 80, 84, 80, 84, 80, 6, 7, 108
OFFSET
1,4
COMMENTS
See A087725 for more about this problem and its history.
LINKS
Richard Korf, Linear-time Disk-Based Implicit Graph Search, Journal of the ACM 55 (2008), No. 6.
Anton Kulchitsky, Comments on the Fifteen Puzzle [The entries for the 3x4 puzzle are wrong. The second "8" should be "11" in each of the 18 cases.- Brian Almond, Oct 10 2021]
EXAMPLE
Array begins:
.n\m...1...2...3...4...5...6...7...8...9
.----------------------------------------
.1.|...0...1...2...3...4...5...6...7...8
.2.|...1...6..21..36..55..80.108.140
.3.|...2..21..31..53..84
.4.|...3..36..53..80
.5.|...4..55..84
.6.|...5..80
.7.|...6.108
.8.|...7.140
.9.|...8
PROG
(Python) # alst(), moves(), swap() in A089473
def T(m, n): # chr(45) is '-'
start, shape = "".join(chr(45+i) for i in range(m*n)), (m, n)
return len(alst(start, shape))-1
def auptodiag(maxd):
for d in range(1, maxd+1):
for m in range(1, d+1):
n = d-m+1
print(T(m, d-m+1), end=", ")
auptodiag(5) # Michael S. Branicky, Aug 02 2021
CROSSREFS
Main diagonal: A087725. Row 2: A151943.
Cf. A090033 same as this sequence, but written as triangle.
Sequence in context: A265993 A115009 A378932 * A073094 A194953 A057606
KEYWORD
nonn,tabl,more
AUTHOR
Anton Kulchitsky (kulchits(AT)arsc.edu), Aug 14 2009, Aug 16 2009
EXTENSIONS
Extensions from Korf's 2008 publication, with corrections, Tomas Rokicki, Aug 17 2011
STATUS
approved