login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151658
Number of permutations of 8 indistinguishable copies of 1..n with exactly 2 adjacent element pairs in decreasing order.
1
0, 784, 73200, 3884640, 182107936, 8277726192, 373396825488, 16812327355840, 756652360885056, 34050346486482384, 1532275508306401840, 68952496159266606624, 3102863293076011859040, 139628857613659024861360, 6283298684030318768507856, 282748441663401954476011392
OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (66,-1083,6508,-13671,11826,-3645).
FORMULA
a(n) = 45^n - (8*n + 1)*9^n + 4*n*(8*n + 1). - Andrew Howroyd, May 06 2020
From Colin Barker, Jul 19 2020: (Start)
G.f.: 16*x^2*(49 + 1341*x - 6093*x^2 - 6561*x^3) / ((1 - x)^3*(1 - 9*x)^2*(1 - 45*x)).
a(n) = 66*a(n-1) - 1083*a(n-2) + 6508*a(n-3) - 13671*a(n-4) + 11826*a(n-5) - 3645*a(n-6) for n>6.
(End)
PROG
(PARI) a(n) = {45^n - (8*n + 1)*9^n + 4*n*(8*n + 1)} \\ Andrew Howroyd, May 06 2020
(PARI) concat(0, Vec(16*x^2*(49 + 1341*x - 6093*x^2 - 6561*x^3) / ((1 - x)^3*(1 - 9*x)^2*(1 - 45*x)) + O(x^40))) \\ Colin Barker, Jul 19 2020
CROSSREFS
Cf. A151624.
Sequence in context: A231976 A188782 A184601 * A231771 A366829 A252389
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, May 29 2009
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, May 06 2020
STATUS
approved