login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151656
Number of permutations of 7 indistinguishable copies of 1..n with exactly 2 adjacent element pairs in decreasing order.
2
0, 441, 35623, 1561238, 59287158, 2165511047, 78259307721, 2820153607740, 101551366735840, 3656082204395957, 131621033827371963, 4738375497166097906, 170581677602043334746, 6140941779058210902771, 221073915991189916489149, 7958661078139728516094136
OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (55,-799,4381,-8884,7552,-2304).
FORMULA
a(n) = 36^n - (7*n + 1)*8^n + 7*n*(7*n + 1)/2. - Andrew Howroyd, May 06 2020
From Colin Barker, Jul 18 2020: (Start)
G.f.: 49*x^2*(9 + 232*x - 932*x^2 - 1024*x^3) / ((1 - x)^3*(1 - 8*x)^2*(1 - 36*x)).
a(n) = 55*a(n-1) - 799*a(n-2) + 4381*a(n-3) - 8884*a(n-4) + 7552*a(n-5) - 2304*a(n-6) for n>6.
(End)
PROG
(PARI) a(n) = {36^n - (7*n + 1)*8^n + 7*n*(7*n + 1)/2} \\ Andrew Howroyd, May 06 2020
(PARI) concat(0, Vec(49*x^2*(9 + 232*x - 932*x^2 - 1024*x^3) / ((1 - x)^3*(1 - 8*x)^2*(1 - 36*x)) + O(x^40))) \\ Colin Barker, Jul 18 2020
CROSSREFS
Cf. A151624.
Sequence in context: A221248 A220680 A189278 * A264088 A264277 A268874
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, May 29 2009
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, May 06 2020
STATUS
approved