login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151625
Number of permutations of 2 indistinguishable copies of 1..n with exactly 3 adjacent element pairs in decreasing order.
3
0, 0, 20, 1168, 27664, 450048, 6030140, 72338144, 811888600, 8742609264, 91700484132, 945739871600, 9647920866016, 97729381122976, 985430937715404, 9906926101717184, 99407643757824680, 996242539625306512, 9976235831375328564, 99850100363120616144
OFFSET
1,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (35, -511, 4099, -19997, 61981, -123645, 157041, -122094, 52812, -9720).
FORMULA
a(n) = 10^n - (2*n + 1)*6^n + binomial(2*n+1, 2)*3^n - binomial(2*n+1, 3). - Andrew Howroyd, May 07 2020
From G. C. Greubel, Sep 07 2022: (Start)
G.f.: 4*x^3*(5 + 117*x - 749*x^2 - 831*x^3 + 6768*x^4 - 5022*x^5 - 3888*x^6)/((1-x)^4*(1-3*x)^3*(1-6*x)^2*(1-10*x)).
E.g.f.: exp(10*x) - (1+12*x)*exp(6*x) + 9*x*(1+2*x)*exp(3*x) - x*(3 + 12*x + 4*x^2)*exp(x)/3. (End)
MATHEMATICA
With[{B=Binomial}, Table[Sum[(-1)^j*B[2n+1, 4-j]*B[j+1, 2]^n, {j, 4}], {n, 30}]] (* G. C. Greubel, Sep 07 2022 *)
PROG
(PARI) a(n) = {10^n - (2*n + 1)*6^n + binomial(2*n+1, 2)*3^n - binomial(2*n+1, 3)} \\ Andrew Howroyd, May 07 2020
(Magma)
A151625:= func< n | (&+[(-1)^j*Binomial(2*n+1, 4-j)*Binomial(j+1, 2)^n: j in [1..4]]) >;
[A151625(n): n in [1..30]]; // G. C. Greubel, Sep 07 2022
(SageMath)
@CachedFunction
def A151625(n): return sum((-1)^j*binomial(2*n+1, 4-j)*binomial(j+1, 2)^n for j in (1..4))
[A151625(n) for n in (1..30)] # G. C. Greubel, Sep 07 2022
CROSSREFS
Column k=3 of A154283.
Sequence in context: A091535 A265654 A152130 * A203775 A184269 A042745
KEYWORD
nonn
AUTHOR
R. H. Hardin, May 29 2009
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, May 07 2020
STATUS
approved