%I #4 Dec 04 2016 13:57:00
%S 1,3,10,37,138,526,2030,7877,30782,120726,475008,1874068,7407446,
%T 29329716,116285466,461555291,1833766116,7291280658,29011041208,
%U 115498923044,460056287616,1833313414216,7308504710010,29145182257596,116260990142440,463889711899484,1851384051250070,7390399587090530
%N Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0) and consisting of n steps taken from {(-1, -1), (0, 1), (1, 0), (1, 1)}
%H M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, <a href="http://arxiv.org/abs/0810.4387">ArXiv 0810.4387</a>.
%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[i, j, n], {i, 0, n}, {j, 0, n}], {n, 0, 25}]
%K nonn,walk
%O 0,2
%A _Manuel Kauers_, Nov 18 2008