login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151087
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, -1), (-1, 1, 1), (0, 0, 1), (1, 0, 0), (1, 0, 1)}.
1
1, 3, 11, 41, 165, 687, 2951, 12861, 56937, 255227, 1156995, 5287185, 24325901, 112587815, 523956543, 2449799269, 11500087377, 54174459251, 256027253243, 1213527789561, 5767023994869, 27470856080927, 131136432604919, 627242243728269, 3005666150390713, 14426914113698667, 69354696385966451
OFFSET
0,2
LINKS
A. Bostan and M. Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2008.
FORMULA
From Vaclav Kotesovec, May 01 2018: (Start)
Recurrence: (n+1)*(n+2)^2*(2048*n^4 - 16640*n^3 + 43280*n^2 - 34992*n - 2979)*a(n) = (n+1)*(20480*n^6 - 123392*n^5 + 103072*n^4 + 436304*n^3 - 547134*n^2 - 114375*n - 35748)*a(n-1) - (71680*n^7 - 578304*n^6 + 1432624*n^5 - 601872*n^4 - 2284697*n^3 + 3374358*n^2 - 1558113*n + 83412)*a(n-2) + 2*(61440*n^7 - 804352*n^6 + 4058592*n^5 - 9580432*n^4 + 8510358*n^3 + 5565239*n^2 - 15547821*n + 7808040)*a(n-3) + (n-3)*(411648*n^6 - 3619072*n^5 + 8794512*n^4 + 1785776*n^3 - 28370523*n^2 + 22689914*n + 2453460)*a(n-4) - 5*(n-4)*(n-3)*(618496*n^5 - 4658688*n^4 + 10072288*n^3 - 1656912*n^2 - 13667306*n + 8981007)*a(n-5) + 1275*(n-5)*(n-4)*(n-3)*(2048*n^4 - 8448*n^3 + 5648*n^2 + 9840*n - 9283)*a(n-6).
a(n) ~ 5^(n+1) / (Pi*sqrt(2)*n) * (1 + sqrt(5*Pi/(2*n))/4).
(End)
MAPLE
Steps:= [[-1, -1, -1], [-1, 1, 1], [0, 0, 1], [1, 0, 0], [1, 0, 1]]:
f:= proc(n, p) option remember; local s, r;
if n <= min(p) then return 5^n fi;
if min(p)>= 1 then add(procname(n-1, p+s), s=Steps)
elif p[1]>= 1 then add(procname(n-1, p+s), s=Steps[2..5])
else add(procname(n-1, p+s), s=Steps[3..5])
fi
end proc:
map(f, [$0..30]); # Robert Israel, May 01 2018
MATHEMATICA
aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, j, -1 + k, -1 + n] + aux[-1 + i, j, k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, 1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
CROSSREFS
Sequence in context: A339037 A027103 A151086 * A149066 A149067 A018962
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved