login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147818
Period 4: repeat [5, 9, 9, 5].
1
5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5, 9, 9, 5, 5
OFFSET
1,1
COMMENTS
Last digit of the number whose binary representation is the concatenation of n 1's, 2n-1 0's and n 1's.
a(n) is the final digit of A147539(n).
FORMULA
a(n+1) = 7-2*cos(Pi*n/2)+2*sin(Pi*n/2). - R. J. Mathar, Oct 08 2011
a(n) = a(n-1)-a(n-2)+a(n-3) for n>3. G.f.: x*(5*x^2+4*x+5)/((1-x)*(x^2+1)). [Colin Barker, Nov 04 2012]
a(n) = a(n-4) for n>4. - Wesley Ivan Hurt, Jul 09 2016
MAPLE
A010879 := proc(n) n mod 10; end:
A147539 := proc(n) 2^n-1+2^(4*n-1)-2^(3*n-1); end:
A147818 := proc(n) A010879(A147539(n)); end: # R. J. Mathar, Jan 22 2009
seq(op([5, 9, 9, 5]), n=1..40); # Wesley Ivan Hurt, Jul 09 2016
MATHEMATICA
PadRight[{}, 100, {5, 9, 9, 5}] (* Wesley Ivan Hurt, Jul 09 2016 *)
PROG
(Magma) &cat [[5, 9, 9, 5]^^30]; // Wesley Ivan Hurt, Jul 09 2016
CROSSREFS
Sequence in context: A085566 A076390 A321632 * A345739 A055199 A147777
KEYWORD
base,easy,nonn
AUTHOR
Omar E. Pol, Nov 14 2008, Jan 25 2009
EXTENSIONS
More terms from R. J. Mathar, Jan 22 2009
STATUS
approved