login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Concatenation of n digits 1 and 2(n-1) digits 0.
4

%I #19 Mar 08 2024 01:12:29

%S 1,1100,1110000,1111000000,1111100000000,1111110000000000,

%T 1111111000000000000,1111111100000000000000,1111111110000000000000000,

%U 1111111111000000000000000000,1111111111100000000000000000000,1111111111110000000000000000000000

%N Concatenation of n digits 1 and 2(n-1) digits 0.

%C a(n) is also A016152(n) written in base 2.

%H Paolo Xausa, <a href="/A147816/b147816.txt">Table of n, a(n) for n = 1..300</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1100,-100000).

%F a(n) = A138119(n)/10.

%F a(n) = 1100*a(n-1)-100000*a(n-2). G.f.: x / ((100*x-1)*(1000*x-1)). - _Colin Barker_, Sep 16 2013

%e n ...... a(n)

%e 1 ....... 1

%e 2 ...... 1100

%e 3 ..... 1110000

%e 4 .... 1111000000

%e 5 ... 1111100000000

%t Array[(10^#-1)*10^(2*#-2)/9 &, 20] (* or *)

%t LinearRecurrence[{1100, -100000}, {1, 1100}, 20] (* Paolo Xausa, Feb 27 2024 *)

%o (PARI) Vec(x/((100*x-1)*(1000*x-1)) + O(x^100)) \\ _Colin Barker_, Sep 16 2013

%Y Cf. A000533, A016152, A135577, A138119, A138120, A138144, A138145, A138146, A138721, A138826, A147757, A147759.

%K base,easy,nonn

%O 1,2

%A _Omar E. Pol_, Nov 13 2008