login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147310
A golden mean based polynomials set that behaves like an even powered Pascal triangle: p(x,n) = (x - phi)^floor(n/2)*(x + phi)^floor(n/2).
0
1, 1, 1, 0, -1, 1, 0, -1, 1, 0, -2, 0, 1, 1, 0, -2, 0, 1, 1, 0, -3, 0, 3, 0, -1, 1, 0, -3, 0, 3, 0, -1, 1, 0, -4, 0, 6, 0, -4, 0, 1, 1, 0, -4, 0, 6, 0, -4, 0, 1, 1, 0, -5, 0, 10, 0, -10, 0, 5, 0, -1
OFFSET
0,11
FORMULA
p(x,n)=(x - GoldenRatio)^Floor[n/2]*(x + GoldenRatio)^Floor[n/2]; t(n,m)=GoldenRatio^((-m + 1))*Reverse(Coefficients(p(x,n))).
EXAMPLE
{1}, {1}, {1, 0, -1}, {1, 0, -1}, {1, 0, -2, 0, 1}, {1, 0, -2, 0, 1}, {1, 0, -3, 0, 3, 0, -1}, {1, 0, -3, 0, 3, 0, -1}, {1, 0, -4, 0, 6, 0, -4, 0, 1}, {1, 0, -4, 0, 6, 0, -4, 0, 1}, {1, 0, -5, 0, 10, 0, -10, 0, 5, 0, -1}
MATHEMATICA
Clear[p, x, n]; p[x_, n_] = (x - GoldenRatio)^Floor[n/2]*(x + GoldenRatio)^Floor[n/2] a = Table[Reverse[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]], {n, 0, 10}]; Flatten[%]; b = Table[a[[n]][[m]]*GoldenRatio^((-m + 1)), {n, 1, Length[a]}, {m, 1, Length[a[[n]]]}]; Flatten[b]
CROSSREFS
Sequence in context: A281271 A284319 A281272 * A025886 A117355 A319571
KEYWORD
tabf,sign,more,uned
AUTHOR
Roger L. Bagula, Nov 05 2008
STATUS
approved