login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Bell numbers (A000110) read mod 19.
7

%I #12 Sep 08 2022 08:45:38

%S 1,1,2,5,15,14,13,3,17,0,18,4,5,7,14,16,15,1,10,2,3,7,1,10,8,16,1,17,

%T 18,3,9,12,2,11,12,16,11,12,5,10,8,11,18,5,17,18,16,2,12,2,14,13,4,9,

%U 8,4,17,15,18,0,10,4,3,16,15,18,14,14,16,8,17,13,17,12,2,13,14,18,10,14,7,0,12

%N Bell numbers (A000110) read mod 19.

%C Conjecture: a(n+109912203092239643840221) = a(n). - _G. C. Greubel_, Feb 01 2016

%H G. C. Greubel, <a href="/A146109/b146109.txt">Table of n, a(n) for n = 0..10000</a>

%H W. F. Lunnon, P. A. B. Pleasants, and N. M. Stephens, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa35/aa3511.pdf">Arithmetic properties of Bell numbers to a composite modulus I</a>, Acta Arithmetica 35 (1979), pp. 1-16.

%t Mod[BellB[Range[0,90]],19] (* _Harvey P. Dale_, May 04 2014 *)

%o (Magma) [Bell(n) mod 19: n in [0..100]]; // _Vincenzo Librandi_, Feb 02 2016

%Y Cf. A000110, A146106, A146107, A146108, A146110, A146111, A146112.

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Feb 07 2009