login
A145844
Number of permutations of length 2n which are invariant under the reverse-complement map and have no decreasing subsequences of length 5.
0
1, 2, 8, 46, 332, 2784, 25888, 259382, 2749244, 30449416, 349379648, 4127103776, 49954287424, 617299996928, 7765434294912, 99214734136966, 1285011754097372, 16845342401817048, 223216584359771296, 2986529546579794040, 40308007404730514096, 548337251596355725312
OFFSET
0,2
FORMULA
a(n) = sum(j=0, n, A000108(j)*A000108(n-j)*C(n, j)^2 ) where A000108(n) = Catalan(n)= (2n)!/(n!(n+1)!) and C(n, j)=n!/(k!(n-j)!).
Recurrence: (n+1)^2*(n+2)*(3*n-1)*a(n) = 2*(30*n^4 + 11*n^3 - 20*n^2 - 3*n + 6)*a(n-1) - 64*(n-1)^3*(3*n+2)*a(n-2). - Vaclav Kotesovec, Feb 18 2015
a(n) ~ 2^(4*n+3) / (Pi^(3/2) * n^(7/2)). - Vaclav Kotesovec, Feb 18 2015
EXAMPLE
a(4) = 1*1*14 + 16*1*5 + 36*2*2 + 16*5*1 + 1*14*1 = 332.
MATHEMATICA
Table[Sum[ Binomial[n, j]^2*Binomial[2*j, j]* Binomial[2*(n - j), n - j]/((n - j + 1)*(j + 1)), {j, 0, n}], {n, 0, 20}]
CROSSREFS
Sequence in context: A276358 A337060 A141117 * A005840 A161881 A219358
KEYWORD
nonn
AUTHOR
Eric S. Egge, Oct 21 2008
EXTENSIONS
More terms from Vaclav Kotesovec, Feb 18 2015
STATUS
approved