login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145502
a(n+1) = a(n)^2+2*a(n)-2 and a(1)=2.
12
2, 6, 46, 2206, 4870846, 23725150497406, 562882766124611619513723646, 316837008400094222150776738483768236006420971486980606
OFFSET
1,1
COMMENTS
General formula for a(n+1) = a(n)^2+2*a(n)-2 and a(1) = k+1 is a(n) = floor(((k + sqrt(k^2 + 4))/2)^(2^((n+1) - 1))).
From Peter Bala, Nov 12 2012: (Start)
The present sequence corresponds to the case x = 3 of the following general remarks. Sequences A145503 through A145510 correspond to the cases x = 4 through x = 11 respectively.
Let x > 2 and let alpha := {x + sqrt(x^2 - 4)}/2. Define a sequence a(n) (which depends on x) by setting a(n) = alpha^(2^(n-1)) + (1/alpha)^(2^(n-1)) - 1. Then it is easy to verify that the sequence a(n) satisfies the recurrence equation a(n+1) = a(n)^2 + 2*a(n) - 2 with the initial condition a(1) = x - 1.
A second recurrence is a(n) = (a(1) + 2)*{Product_{k = 1..n-1} a(k)} - 2.
The following algebraic identity is valid for x > 2:
(x + 1)/sqrt(x^2 - 4) = (1 + 1/(x - 1))*(y + 1)/sqrt(y^2 - 4), where y - 1 = (x - 1)^2 + 2*(x - 1) - 2. Iterating the identity yields the product expansion (x + 1)/sqrt(x^2 - 4) = Product {n = 1..oo} (1 + 1/a(n)).
A second expansion is Product {n = 1..oo} (1 + 2/(a(n) + 1) = sqrt((x + 2)/(x - 2)). For an alternative approach to these identities see the Bala link.
(End)
LINKS
Daniel Duverney, Irrationality of Fast Converging Series of Rational Numbers, Journal of Mathematical Sciences-University of Tokyo, Vol. 8, No. 2 (2001), pp. 275-316.
Daniel Duverney and Takeshi Kurosawa, Transcendence of infinite products involving Fibonacci and Lucas numbers, Research in Number Theory, Vol. 8 (2002), Article 68.
FORMULA
From Peter Bala, Nov 12 2012: (Start)
a(n) = phi^(2^n) + (1/phi)^(2^n) - 1, where phi := (1 + sqrt(5))/2 is the golden ratio.
a(n) = A001566(n-1) - 1.
Recurrence: a(n) = 4*(Product_{k = 1..n-1} a(k)) - 2 with a(1) = 2.
Product_{n >= 1} (1 + 1/a(n)) = 4/sqrt(5).
Product_{n >= 1} (1 + 2/(a(n) + 1)) = sqrt(5). (End)
From Amiram Eldar, Sep 10 2022: (Start)
a(n) = A000324(n) - 3.
Sum_{n>=1} (-2)^n/a(n) = -1/2 (Duverney, 2001). (End)
Product_{n>=1} (1 + 3/a(n)) = 4 (Duverney and Kurosawa, 2022). - Amiram Eldar, Jan 07 2023
MATHEMATICA
aa = {}; k = 2; Do[AppendTo[aa, k]; k = k^2 + 2 k - 2, {n, 1, 10}]; aa
(* or *)
k = 1; Table[Floor[((k + Sqrt[k^2 + 4])/2)^(2^(n - 1))], {n, 2, 7}]
NestList[#^2+2#-2&, 2, 10] (* Harvey P. Dale, Dec 14 2021 *)
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 11 2008
STATUS
approved